If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+6x-6723=0
a = 3; b = 6; c = -6723;
Δ = b2-4ac
Δ = 62-4·3·(-6723)
Δ = 80712
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80712}=\sqrt{36*2242}=\sqrt{36}*\sqrt{2242}=6\sqrt{2242}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{2242}}{2*3}=\frac{-6-6\sqrt{2242}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{2242}}{2*3}=\frac{-6+6\sqrt{2242}}{6} $
| 4x+3-1=2(2x-2)-2 | | -14x+10x-42=30 | | -3(2m+5)+8=5(-2m+1) | | 10(5n)+5n=330 | | (z+6)^2=5 | | 3y×-+10=20 | | s-22.15=3.24 | | 7/3x3x=2/3 | | 3x-58=8x-8 | | 588=(4x)(3x) | | 2/5x+4=1/5x | | 3y=7+5y-3 | | h-5.50=1.2 | | 44=0.8x | | 3(3n-5)=-5(n-4)+7n | | -9.8=-3.4+w/4 | | 4^(x-9)=11 | | 17y-30+5=-3y+12-3 | | S+(2s)+(20+s)=180 | | -5(a-3)=-8-8(a+2) | | 1/2c=1 | | h+3÷5=2 | | 10y-4=15y+6 | | -7/9b=14/3 | | _7/9b=14/3 | | 2/5c=4-1/5c | | 4x2+20x+1=0 | | (3x+6)(9x-4)(3x-4)=0 | | 1.5x=22+.5x | | 21-9=x | | 3/1=1/y | | 16t+1.5t^2=-140 |